
CSCI 210: Computer Architecture

Lecture 30: Data Hazards

Stephen Checkoway

Slides from Cynthia Taylor

Datapath with Forwarding

We can best solve these data hazards

A. By stalling.

B. By forwarding.

C. By combining forwards and
stalls.

D. By doing something else. lw $2,20($1)
and $4,$2,$5
or $8,$2,$5
add $9,$4,$2
slt $1,$6,$7

Load-Use Data Hazard

Need to stall
for one cycle

How to Stall the Pipeline

• Detect hazard in ID stage using Hazard detection unit

– Check if instruction in EX stage is load with destination rs or rt

• Force control values in ID/EX register to 0

– EX, MEM and WB do nop (no-operation)

How to Stall the Pipeline

How to Stall the Pipeline

• Prevent update of PC
and IF/ID register

– Instruction with
dependency is
decoded again

– Following instruction
is fetched again

– 1-cycle stall allows
MEM to read data for
lw

After we add the stall

A. Everything works with our
existing forwarding

B. We need to forward between
the register files to solve the 2nd
hazard

C. We need to do something else

Stall/Bubble in the Pipeline

Stall inserted
here

Stall/Bubble in the Pipeline

Or, more
accurately…

Questions about Data Hazards?

Consider the code
addi $s0, $s0, 4

lw $t0, 0($s0)

sub $t1, $t2, $t2

add $t0, $t0, $t1

Does this code require a forward, a stall, both, or neither?

A. Forward

B. Stall

C. Both

D. Neither

Stalls and Performance

• Stalls reduce performance

– But are required to get correct results

• Can rearrange code to avoid hazards and stalls

Dealing with Data Hazards
• As an ISA designer, you have a choice between reordering

instructions in software or hardware. Which might you choose
and why?

Selection HW or SW

A Software Compilers have a large window of instructions available to do reordering to
eliminate hazards

B Software Detecting data hazards in hardware can be difficult and expensive

C Hardware Hardware knows at runtime the actual dependencies and can exploit that
knowledge for better reordering

D Hardware Exposing the number of required stalls violates the abstraction between hardware
and software

CS History: Intel Itanium Chip
• Intel Chip launched in 2001 that used the

VLIW (Very Long Instruction Word) ISA

• This ISA was designed to do all code
reordering at compile time, rather than at
runtime

• Designed for servers/high-performance,
goal eventually desktop market

• Performance was disappointing, especially
when emulating x86

• “Itanium's promise ended up sunken by a
lack of legacy 32-bit support and difficulties
in working with the architecture for writing
and maintaining software” - Techspot

Arch dude, CC BY-SA, via Wikimedia Commons

Given this pipeline where branches are resolved by the ALU – let’s assume we stall

until we know the branch outcome. How many stall cycles we need per branch?

Stalling the pipeline

Selection cycles

A 0

B 1

C 2

D 3

E 4

Stalling for Branch Hazards

beq $4, $0, there

and $12, $2, $5

or ...

add ...

sw ...

IM Reg DM Reg

IM Reg

IM Reg DM

IM Reg DM Reg

IM Reg DM Reg

CC1 CC2 CC3 CC4 CC5 CC6 CC7 CC8

Bubble BubbleBubble

Stalling for Branch Hazards

• Seems wasteful, particularly when the branch isn’t taken.

• Makes all branches cost 4 cycles.

• What if we just assume the branch isn’t taken?

Assume Branch Not Taken

beq $4, $0, there

and $12, $2, $5

or ...

add ...

sw ...

IM Reg DM Reg

IM Reg

IM Reg DM

IM Reg DM Reg

IM Reg DM Reg

CC1 CC2 CC3 CC4 CC5 CC6 CC7 CC8

• works pretty well when you’re right

Assume Branch Not Taken

beq $4, $0, there

and $12, $2, $5

or ...

add ...

there: sub $12, $4, $2

IM Reg

IM Reg

IM

IM Reg

IM Reg DM Reg

CC1 CC2 CC3 CC4 CC5 CC6 CC7 CC8

Flush

Flush

Flush

• same performance as stalling when you’re
wrong

Wrong Path insts

	Slide 1: CSCI 210: Computer Architecture Lecture 30: Data Hazards
	Slide 7: Datapath with Forwarding
	Slide 10: We can best solve these data hazards
	Slide 11: Load-Use Data Hazard
	Slide 12: How to Stall the Pipeline
	Slide 13
	Slide 14: How to Stall the Pipeline
	Slide 15: After we add the stall
	Slide 16: Stall/Bubble in the Pipeline
	Slide 17: Stall/Bubble in the Pipeline
	Slide 18: Questions about Data Hazards?
	Slide 19: Consider the code addi $s0, $s0, 4 lw $t0, 0($s0) sub $t1, $t2, $t2 add $t0, $t0, $t1 Does this code require a forward, a stall, both, or neither?
	Slide 20: Stalls and Performance
	Slide 21: Dealing with Data Hazards
	Slide 22: CS History: Intel Itanium Chip
	Slide 23
	Slide 24: Stalling for Branch Hazards
	Slide 25: Stalling for Branch Hazards
	Slide 26: Assume Branch Not Taken
	Slide 27: Assume Branch Not Taken

